01020304050607080910111213141516171819202122232425

Advent of Code

2019/16

Flawed Frequency Transmission

in C#

by encse

You're 3/4ths of the way through the gas giants. Not only do roundtrip signals to Earth take five hours, but the signal quality is quite bad as well. You can clean up the signal with the Flawed Frequency Transmission algorithm, or FFT.

As input, FFT takes a list of numbers. In the signal you received (your puzzle input), each number is a single digit: data like 15243 represents the sequence 1, 5, 2, 4, 3.

Read the full puzzle.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Numerics;

namespace AdventOfCode.Y2019.Day16;

[ProblemName("Flawed Frequency Transmission")]
class Solution : Solver {

    public object PartOne(string input) {

        int[] Fft(int[] digits) {
            IEnumerable<int> Pattern(int digit) {
                var repeat = digit + 1;
                while (true) {
                    foreach (var item in new[] { 0, 1, 0, -1 }) {
                        for (var i = 0; i < repeat; i++) {
                            yield return item;
                        }
                    }
                }
            }

            return (
                from i in Enumerable.Range(0, digits.Length)
                let pattern = Pattern(i).Skip(1)
                let dotProduct = (from p in digits.Zip(pattern) select p.First * p.Second).Sum()
                select Math.Abs(dotProduct) % 10
            ).ToArray();
        }

        var digits = input.Select(ch => int.Parse(ch.ToString())).ToArray();

        for (var i = 0; i < 100; i++) {
            digits = Fft(digits);
        }

        return string.Join("", digits.Take(8));
    }

    public object PartTwo(string input) {
        /* 
            Let's introduce the following matrix:
                    FFT = [
                        1,  0, -1,  0,  1,  0, -1,  0, ...
                        0,  1,  1,  0,  0, -1, -1,  0, ...
                        0,  0,  1,  1,  1,  0,  0,  0, ...
                        0,  0,  0,  1,  1,  1,  1,  0, ...
                        0,  0,  0,  0,  1,  1,  1,  1, ...
                        0,  0,  0,  0,  0,  1,  1,  1, ...
                        0,  0,  0,  0,  0,  0,  1,  1, ...
                        0,  0,  0,  0,  0,  0,  0,  1, ...
                        ...
                    ]

            A single FFT step of the data stored in vector x is just a matrix multiplication FFT . x
            We get repeated FFT steps with multiplying with the proper power of FFT: FFT^2, FFT^3, ... FFT^100.

            Looking at the FFT matrix, we notice that the bottom right corner is always an upper triangular filled with 1s:
                    A = [
                        1, 1, 1, 1, ...
                        0, 1, 1, 1, ...
                        0, 0, 1, 1, ...
                        0, 0, 0, 1, ...
                        ....
                    ]
            The problem asks for output components that correspond to multiplication with rows in this area.

            Examining A's powers reveal that the the first row can be:
                the numbers from 1-n, 
                    A^2 = [
                        1, 2, 3, 4, ...
                        0, 1, 2, 3, ...
                        0, 0, 1, 3, ...
                        0, 0, 0, 1, ...
                        ....
                    ]
                the sum of numbers from 1-n
                    A^3 = [
                        1, 3, 6, 10, ...
                        0, 1, 3, 6, ...
                        0, 0, 1, 3, ...
                        0, 0, 0, 1, ...
                        ....
                    ]
                the sum of the sum of numbers from 1-n
                    A^4 = [
                        1, 4, 10, 20, ...
                        0, 1,  4, 10, ...
                        0, 0,  1,  4, ...
                        0, 0,  0,  1, ...
                        ....
                    ]
                etc.
            And we get the second, third... rows with shifting the previous one.

            Using the properties of binomial coefficients we get that the items of the first row of A^k are
                (A^k)_1_j = choose(j - 1 + k - 1, k - 1)

                see https://math.stackexchange.com/questions/234304/sum-of-the-sum-of-the-sum-of-the-first-n-natural-numbers

            and we can compute the items from left to right with
                choose(m + 1, n) = choose(m, n) * (m + 1) / (m + 1 - n)
            
            specifically
                 (A^k)_1_(j + 1) = 
                    choose(j + k - 1, k - 1) = 
                    choose(j - 1 + k - 1, k - 1) * (j + k - 1) / j =
                    (A^k)_1_j * (j + k - 1) / j

            let B = A^100 and so k - 1 = 99.
                B_1_(j + 1) = B_1_j * (j + 99) / j
            and 
                B_i_j = B_1_(j - i + 1)

            we need to compute [B]_{1..7} * xs % 10, where xs is the digits of input repeated 10000 times shifted with t
         */

        var xs = input.Select(ch => int.Parse(ch.ToString())).ToArray();
        var res = "";

        var t = int.Parse(input.Substring(0, 7));
        var crow = 8;
        var ccol = input.Length * 10000 - t;

        var bijMods = new int[ccol + 1];
        var bij = new BigInteger(1);
        for (var j = 1; j <= ccol; j++) {
            bijMods[j] = (int)(bij % 10);
            bij = bij * (j + 99) / j;
        }

        for (var i = 1; i <= crow; i++) {
            var s = 0;
            for (var j = i; j <= ccol; j++) {
                var x = xs[(t + j - 1) % input.Length];
                s += x * bijMods[j - i + 1];
            }
            res += (s % 10).ToString();
        }

        return res;
    }

}

Please ☆ my repo if you like it!

© 2025 Advent of Code is a registered trademark in the US Images provided by Bing image creator