Every year, Santa manages to deliver all of his presents in a single night.
This year, however, he has some new locations to visit; his elves have provided him the distances between every pair of locations. He can start and end at any two (different) locations he wants, but he must visit each location exactly once. What is the shortest distance he can travel to achieve this?
Read the full puzzle.
using System.Collections.Generic;
using System.Linq;
using System.Text.RegularExpressions;
namespace AdventOfCode.Y2015.Day09;
[ProblemName("All in a Single Night")]
class Solution : Solver {
public object PartOne(string input) => Routes(input).Min();
public object PartTwo(string input) => Routes(input).Max();
IEnumerable<int> Routes(string input) {
var distances = input.Split('\n').SelectMany(line => {
var m = Regex.Match(line, @"(.*) to (.*) = (.*)");
var (a, b) = (m.Groups[1].Value, m.Groups[2].Value);
var d = int.Parse(m.Groups[3].Value);
return new[] {
(k: (a, b), d),
(k: (b, a), d)
};
}).ToDictionary(p => p.k, p => p.d);
var cities = distances.Keys.Select(k => k.Item1).Distinct().ToArray();
return Permutations(cities).Select(route =>
route.Zip(route.Skip(1), (a, b) => distances[(a, b)]).Sum()
);
}
IEnumerable<T[]> Permutations<T>(T[] rgt) {
IEnumerable<T[]> PermutationsRec(int i) {
if (i == rgt.Length) {
yield return rgt.ToArray();
}
for (var j = i; j < rgt.Length; j++) {
(rgt[i], rgt[j]) = (rgt[j], rgt[i]);
foreach (var perm in PermutationsRec(i + 1)) {
yield return perm;
}
(rgt[i], rgt[j]) = (rgt[j], rgt[i]);
}
}
return PermutationsRec(0);
}
}
Please ☆ my repo if you like it!